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Introduction

This Global Research Report is about 
the way we recognize natural divisions 
of knowledge and research, or, more 
specifically, the way we categorize 
publications for discovery, analysis, 
management and policy purposes.  
We describe a history of classification 
that has generally been ‘top down’,  
the characteristics of exemplar systems 
from around the world that feature in 
Clarivate products, and the introduction 
of new bottom-up approaches that  
draw on research data itself. Then we 
review the analytical consequences of 
applying them to national and 
institutional data and draw attention  
to the effect of different classification 
schemes on document counts and 
citation impact calculations.

This report is not only descriptive. It also 
promotes the need for good practice in 
data management as part of the 
responsible use of research metrics. 
Choosing a categorical system for 
research data is not a value-free 
decision: "Words are the bugles of 
social change," wrote Charles Handy in 
The Age of Unreason (Handy, 1989, p. 
17). "When our language changes, 
behavior will not be far behind." The 
labeling of topics and disciplines 
reflects this in research. Being aware of 
the characteristics and limitations of 
the ways we categorize research 
publications is important to research 
management because it influences the 
way we think about established and 
innovative research topics, the way we 

analyze research activity and 
performance, and even the way we set 
up organizations to do research. There 
are many ways of organizing this 
information, most of which are sensibly 
and coherently related but may have 
developed for specific purposes. 
Choosing a categorization scheme by 
happenstance rather than informed 
choice, or for a purpose other than that 
for which it was intended, can lead to 
equally uninformed outcomes.

The chief organizing unit of research is the specialty,  
an "invisible college" that represents "some type of natural 
order in science … Our method of indexing papers by 
descriptors or other terms is almost certainly at variance 
with this natural order … If we can successfully define  
the natural order, we will have created a sort of giant  
atlas of the corpus of scientific papers that can be 
maintained in real time for classifying and monitoring 
developments as they occur." 

– Derek J. de Solla Price (1980)
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Categorizing research

There is no universal template onto 
which knowledge can be pasted, as 
historian of science Derek J. de Solla 
Price recognized. Knowledge is a 
continuous spectrum but it has long 
been found convenient, and 
increasingly necessary, to organize 
information by inferring boundaries 
between things. Plato, in the 4th 
century BCE, described a division of 
knowledge into arithmetic, geometry, 
music and astronomy. 

Ethnobiologists suggest that the 
human inclination to categorize nature 
is innate. There seems to be a universal 
rule that identifies non-human animals, 
first in the categories of bird/fish/snake 
and then by progressively adding 
worm-bug/mammal (Atran, 1990).

As the knowledge base grew, the 
message that humans need to organize 
and prioritize information about the 
world around them was reinforced.  
It may have been possible for 16th 
century natural philosophers to know 
most of what was being studied but 
specialisms appeared and divisions 
grew. The 19th century saw the 
innovation of formal, relational library 
indexing, because it was no longer 
possible to file and recover the 
proliferating mass of documents if they 
were shelved without some ordering. 

The 19th century: 
Library of Congress   
and Dewey

The Dewey Decimal Classification 
(1876) was one version and the Library 
of Congress Classification (1897) was 
another. Paul Otlet and S. R. 
Ranganathan advanced other systems, 

Universal Decimal Classification  
(1904) and Colon Classification (1933) 
respectively, and there are many 
others, including that of E. Wyndham 
Hulme (see sidebar). The Dewey and 
Library of Congress classification 
systems established the idea of 
hierarchical information structures.  
The Library of Congress’ Class Q  
refers to Science and within that 
Subclass QK refers to Botany. Dewey 
follows a similar system but numerically 
rather than alphabetically. Some 
classes became anachronistic: 
knowledge classification systems are  
a product of their time! The popularity 
of these classifications stemmed from 
the ability they gave to users rapidly  
to store and retrieve both existing  
and new documents based on their  
primary contents.

The 20th century: the 
Science Citation Index

The growth of research knowledge 
continued. Journals proliferate, 
established fields evolve and 
fission, new fields appear, and the 
spread became too great to be 
readily appreciated by an individual 
researcher. The need for information 
about information emerged.

In the 1950s Eugene Garfield, 
founder of the Institute for Scientific 
Information (ISI), recognized that the 
ability to work at the leading edge 
depended on researchers’ current 
awareness of discovery in their fields. 
Traditional, labor-intensive indexing fell 
far behind the growth of the scientific 
literature after World War II. Existing 
indexes, such as Chemical Abstracts, 
offered information years out-of-date. 

Garfield decided to collate contents 
pages of the latest issues of important 
journals and publish these as Current 
Contents, a weekly discipline-specific 
bulletin that allowed researchers 
to review recently published  
journals in their areas of interest. 

But Garfield also saw defects in 
discipline-specific classification, 
especially as handled by traditional 
indexing approaches using controlled 
vocabularies and subject headings. 
His advocacy of citation indexing 
(Garfield, 1955) was an attempt at, as 
he said, "breaking the subject index 
barrier" (Garfield, 1957). When he 
produced the first commercially 
available Science Citation Index 
(SCI)™ in 1964, he showed that related 
papers could be identified through 
citations – a navigation method 
embedding the expert knowledge that 
authors added to papers in the form 
of cited references (Garfield, 1964).

The Science Citation Index  
did not dispense with classification. 
Each journal was assigned to one 
or more field categories, to aid 
information retrieval where a user 
searched by field classification. As a 
unified index of science, spanning all 
domains, Garfield began by identifying 
the most influential titles in each field 
and then extended the corpus through 
consultation with experts and analysis 
of the journals cited most in each 
field (Pudovkin & Garfield, 2002). 

The SCI was not designed to be 
encyclopedic but selective, covering 
the (initially about 600) internationally 
influential journals then published.

The journals indexed in the SCI 
became digitized in an accessible 
format as the Web of Science™ (1997),  
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classified into disciplines, fields and 
subfields (Web of Science journal 
categories). More than 20,000 journals 
are now indexed in the Web of Science, 
currently grouped into 254 categories. 
Every item in each journal in a category 
is indexed and reported, cover-to-cover 
and coverage is constantly reviewed as 
knowledge flows and evolves. Clarivate 
also uses the Essential Science Indicators 
(ESI)™ database which has 21 broad 
subject categories, again journal-defined, 
plus a multidisciplinary category; it does 
not cover the arts or humanities. The 
difference between these systems is not 
just their coverage and granularity but 
also that the Web of Science categories 
are inclusive, so a journal may appear 
in more than one category, whereas 
ESI categories are exclusive. The Web 
of Science also has ‘Research Areas’ 
which are intermediate between these 
other two but exclusive, like ESI.

Research management 
and assessment

Since the 1990s, research management 
has become more active at national 
and institutional level and new systems 
for categorizing research activity have 
emerged across the globe. As signals 
of change, universities reordered 
their departmental structures: for 
example, departments of Botany and 
Zoology disappeared, Genetics and 
Biochemistry emerged, and these 
in turn were subsumed into Schools 
of Biological Sciences. Business 
schools spawned novel and complex 
departmental portfolios. Medical 
schools lost ancient specialties 
and gained new technologies 
such as Nuclear Medicine.

The Organisation for Economic 
Co-operation and Development 
(OECD), taking a global perspective, 

developed the Frascati classification 
(1963, revised 2007). This contrasts with 
university structures because OECD 
categories focus on function rather than 
content. Research is undertaken for 
different reasons and Frascati 
recognizes: basic, which aims to 
acquire new knowledge not directed 
toward any particular use; applied, 
which is investigation to acquire 
knowledge directed to a specific 
practical objective; or experimental 
development, which is a systematic  
based on existing knowledge. There 
are six OECD subject-based Fields of 
Science (FoS) to which activity under 
the three research types may be 
assigned: Natural sciences; 
Engineering and technology; Medical 
and health sciences; Agricultural 
sciences; Social sciences; and 
Humanities. The FoS classification is 
one of several available for users of 
InCites™ – a Clarivate platform for 
research performance analysis.

The OECD FoS look like conventional 
academic faculties, but they are not. 
Agriculture signals that this is in fact 
economic categorisation. The OECD 
is interested in measuring expenditure, 
people, activity and outcomes devoted 
to or created by research and 
development performed in particular 
industrial sectors. So, whereas 
academia recognizes Microbiology as 
a category in its own right, the OECD is 
interested in whether it is Microbial 
physiology (Natural science), Microbial 
disease (Medicine and health) or 
Microbial soil ecology (Agriculture). 
There is a similar matching issue 
between Chemistry as a science 
department and Chemical industries: 
industry uses engineering, 
mathematics, and so on. Such 
functional distinctions are entirely 
reasonable but must be properly 
understood by users.

E. Wyndham Hulme
Librarian of the Patent Office  
of Great Britain 1894 to 1919

E. Wyndham Hulme proposed 
a system for the classification of 
books according to both content 
and publication attributes  
(Dousa, 2017). He deserves 
attention not only for his theory 
of classification but also for 
suggesting that counting works 
in each category through time 

could reveal trends in knowledge 
accumulation across fields and in 
emerging specialty areas. "Book 
classification is shelf classification, 
and shelf classification carried to 
its furthest limits leads necessarily 
to uniformity in the extension and 
definition of its classes," he wrote. 
"Add to this a chronological order 
of books in their classes and your 
scheme of classification acquires 
a new value: for it presents for 
each period a bibliographical 
counterpart of the corresponding 
growth of the activities of the 
human mind" (Hulme, 1923).  
This quantitative approach 
anticipated scientometric studies 
by half a century and distinguishes 
Hulme as a pioneer and visionary.
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National categorical systems

There are many other well-established 
categorical classifications in addition  
to the OECD, the Web of Science and 
ESI. The examples described below 
are included in InCites, so we note how 
they map to the Web of Science.

These systems were developed with 
diverse objectives in mind, though 
usually related to the general principle 
that they should make sense to both 
government, as the research funder, 
and researcher, who delivers the 
outcome, in order to organize a 
mutually equitable assessment 
process. Each is the product of 
significant policy work, review with 
stakeholders, pilot projects and 
experience. None are casual creations, 
all have consensus support from users, 
all are seen to function well in delivery, 
and yet they do not all do the same 
thing. Different classifications may 
produce different outcomes, as we 
show later, but none are right or  
wrong: they were created for  
different objectives.

United Kingdom – 
research assessment

The first Research Selectivity Exercise 
was in 1986. Universities submitted 
portfolios of their research activity, 
which were assessed by peer review 
via 150 discipline-based panels, a 
number that was reduced to 72 Units of 
Assessment (UOAs) for the 1992 
Research Assessment Exercise (RAE), 
to 67 UOAs for RAE 2008, and to 36 
UOAs under four main panels for the 
2014 Research Excellence Framework 
(REF). The RAE/REF UOA structure 
mimics university departments. It was 
established with assessment in mind; 
universities’ need to make comparable 
submissions to panels; and assessment 
grades becoming weighting factors in 
a funding formula that would inform the 
institutions. The progressive reduction 

in category count, from 150 to 36 over 
30 years, shows that unduly granular 
systems may be unhelpful: categories 
may overlap in content and journal  
use when outputs submitted in 2014 
(36 UOAs) are analyzed but panels can 
become highly self-referential in a 
fine-grained UOA structure.

The UOAs are mapped to the  
Web of Science database by  
reference to the frequency with  
which articles from particular journals 
have been submitted by academics  
for assessment. This builds up an 
inclusive core coverage for each  
UOA and a small but minimal overlap  
at the interdisciplinary margins.

Australia-New Zealand 
– assessment and policy

The Australia-New Zealand Standard 
Research Classification (ANZSRC), 
originally developed by the Australian 
Bureau of Statistics (1993) and recently 
updated, crosses economic and 
academic boundaries. ANZSRC is 
used by policy bodies and is popular 
in research analysis. It has three 
dimensions: Types of Activity (TOA), 
derived from the OECD; 17 Socio-
Economic Objectives (SEO); and 22 
Fields of Research (FOR). The SEO 
and FOR systems are hierarchical to six 
digits and combine the Dewey-type 
concept with a contemporary range 
of subject groups. Thus SEO Division 
86 (Manufacturing) has Group 8607 
(Agricultural chemicals) and Objective 
860702 (Chemical fertilizers), while 
FOR Division 09 (Engineering) has 
Group 0901 (Aerospace engineering) 
and Field 090101 (Aerodynamics). 
(In our notation we abbreviate 
Divisions as L1 and Groups as L2). 
The ANZSRC is employed by the 
Australian Research Council (ARC) 
in the cyclical assessment process of 
Excellence in Research for Australia 

(ERA). Submissions are made to 
each FOR by reference to expert-
assigned journal lists. Each FOR has 
specified and exclusive content. 

The FOR journal lists are mapped 
directly to journals indexed in the  
Web of Science. The lists are  
purposed for Australia and do not 
capture some extra-regional work, 
which may result in a reduced 
tally for a country or institution 
compared with direct analysis 
of the Web of Science data.

Brazil: CAPES – 
evaluation of  
research staff

The Coordenadoria de Aperfeiçoamento 
de Pessoal de Nível Superior (CAPES) 
classification schema was created by the 
Foundation CAPES, linked to the Ministry 
of Education, to support the evaluation 
and skills improvement of higher 
education staff in Brazil. It is a hierarchical 
classification structured in three levels: 
nine broad areas; 49 evaluation areas; 
and 121 more granular sub-areas. Data 
on research performance in higher-level 
fields incorporate data on research 
performance in subordinate fields. For 
example, research in the Health Sciences 
(code 6) will include data on research 
in all nine subordinate evaluation areas 
(6.1 to 6.9). A report on research in the 
evaluation area Physical Education (6.8) 
will include data on research in all three 
subordinate sub-areas (6.8.1 to 6.8.3).

To map to the Web of Science, 
category elements within the CAPES 
category schema are compared to 
scope notes for the Web of Science 
journal categories. Each Web of 
Science category is assigned to one 
(or occasionally more than one) of the 
121 CAPES sub-area subject codes and 
each CAPES category absorbs multiple 
Web of Science journal categories. 
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Brazil: FAPESP – 
research investment

The Fundação de Amparo à 
Pesquisa do Estado de São Paulo 
(FAPESP) classification scheme was 
created to evaluate the scientific 
and technological development 
of the Brazilian state of São Paulo, 
which has prioritized investment 
in research. The classification is 
hierarchical and is structured into 
two levels: nine high-level categories 
and 72 more detailed categories. 
Research performance data in high-
level fields incorporates data on 
research performance in subordinate 
fields. For example, a report on 
research in Health Sciences (4) will 
include data on research in all seven 
subordinate subject fields (4.1 to 4.7).

The FAPESP classification includes 
all Web of Science categories. Most 
journal categories are mapped to 
only one FAPESP category and 
multiple categories can be mapped 
to the same FAPESP category.

Italy – university 
administration  
and review

The Agenzia Nazionale di Valutazione 
del Sistema Universitario e della 
Ricerca (ANVUR) classification scheme 
is based on an official academic 
fields and disciplines list for Italian 
universities' research and teaching, 
organized around 17 broad categories. 
ANVUR’s approach links performance 
evaluation with primary knowledge-
based missions: scientific research, 
teaching (only for universities) 
and socio-economic impact. This 
includes coordination of institutional 
Independent Evaluation Units (Nuclei di 
Valutazione); general analysis, statistical 
reports and benchmarks; sharing best 
practice; and on-site visits. In 2009, 
the Italian Parliament introduced 
new outcome-oriented performance 
evaluation for all public institutions. 

An Independent Commission for 
the Evaluation, Transparency and 
Integrity of Government (CIVIT) was 
appointed to monitor and evaluate 
strategic planning, performance and 
accountability. In 2013, ANVUR took 
over CIVIT’s role regarding public 
universities and research institutes 
controlled by the Ministry of Education, 
Universities and Research (MIUR).

The ANVUR classification has been 
mapped to the Web of Science 
categories in a joint project between 
ANVUR and Clarivate to establish a 
foundation for bibliometric analyses 
carried out by ANVUR in 2013. 
The study developed indicators of 
international research standing where 
ANVUR assesses university research 
quality in an ANVUR Evaluation of 
Research Quality framework.

Japan – grant  
funding analysis

The KAKEN category definitions are 
based on the Grant-in-Aid for Scientific 
Research (KAKENHI) Database. The 
objective is to develop researcher-
led proposals, from basic to applied 
research in the humanities, social 
sciences and natural sciences. The 
grants provide financial support for 
creative and pioneering research 
projects that are expected to become 
the foundation of social development. 
The research projects are selected 
using a peer-review process, screened 
by multiple researchers in a field of 
specialization close to that of the 
applicant. Submissions to KAKENHI 
are made in approximately 300 
categories, which are organized 
hierarchically into four levels. 

The 2007 version has 66 categories 
in level 3 and 10 categories in level 2. 
Categories at each of these two levels 
were mapped to Web of Science 
categories via a study that collated 
articles linked to KAKENHI grants via 
the database operated by Japan’s 
National Institute of Informatics (NII). 

China – university 
teaching and research

The China State Council Academic 
Degree Committee (SCADC) 
classification is based on the degree-
granting and academic training 
directory published in 2018 by SCADC 
and the Ministry of Education of the 
People’s Republic of China. It thus 
has a strong orientation towards 
the academic curricular structure, 
although it is now also used for 
research evaluation. The SCADC 
classification is hierarchical and has 
two levels. There are 13 broad-level 
categories represented by two-
digit codes and 96 more granular 
categories numbered according to 
the broader category in which they 
fall. For example, Biology (0710) will 
roll up into Natural Science (07).

Clarivate has worked with SCADC 
to develop a journal mapping from 
the Web of Science to the SCADC 
classification. Some categories 
defy satisfactory translation into 
bibliometric analysis because they 
are under-represented in publications 
or because of subject area overlap. 
Some 33 subordinate SCADC 
categories would not translate into 
international mapping and one broad 
category (Military Science) is not 
recognized in international literature.
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Research on classification

Scientometric researchers take a special 
interest in classification since it is 
essential for calculating performance 
measures (Sjögårde 2019; Waltman 
2016). Citations are collected as 
evidence of research impact but, for fair 
comparisons of papers across 
publication fields and years, the raw 
count must be normalized. Each field 
has a characteristic citation pattern and 
older papers have had more time to 
accrue citations. So, to calculate a 
normalized or relativized citation count 
for each paper, a reference set is 
needed drawn from papers with a 
similar citation pattern, given their age 
and focus. The average citation count 
for the reference set is then the baseline 
for citations to each particular paper 
(Moed, 2005; Waltman & van Eck, 2019).

There is no ground truth or gold 
standard to validate a reference system. 
Different approaches to their creation 
have strengths and weaknesses, 
conveniences and inconveniences. 
There are three main ways of defining 
such reference sets: journal-defined 
fields, in which a paper published in a 
journal belongs to the journal-associated 
field; supervised information retrieval, 
in which similar papers are aggregated 
using keywords, author names, journals 
and other attributes, as well as citation 
linkages; and article-level, 
algorithmically constructed 
classification (Zitt et al, 2019).

Journal-defined fields, such as the 
Web of Science categories, use a 
combination of citation analysis and 
informed judgment to define 
categories that are reasonable 
approximations of fields and subfields. 
They are understandable, accessible 
and convenient, and replication in data 
analysis is simple. Scientometrics has 
traditionally favored such systems, 
which allows for comparisons across 
studies (Glänzel & Schubert, 2003; 
Glänzel et al, 2009; Leydesdorff & 

Rafols, 2009). Among several journal-
defined classification systems, the 
Web of Science categories have been, 
and likely still are, the most frequently 
used. However, the contents of 
multidisciplinary journals, such as 
Science and Nature, cannot be 
assigned to one or a few categories.  
A solution is to assign each paper in 
these serials to a category based on 
their cited references and the frequency 
with which cites to specific fields appear 
(Glänzel et al, 1999). In ESI, papers in 
multidisciplinary journals are treated in 
this way and assigned to ESI categories. 
This is not a simple undertaking for  
the end-user analyst in other contexts 
but generally available only to 
scientometricians, who build systems 
for such reassignments.

More importantly, journal-defined 
fields are incomplete representations 
of research fields since papers 
belonging to them are often published 
in journals assigned elsewhere. In fact, 
highly cited papers often appear in 
high-impact multidisciplinary journals. 
Furthermore, while the journals within  
a category are well-defined, they may 
also be heterogeneous in their focus 
and citation density. In such a case, 
comparing citations for a paper to the 
baseline of the category may seriously 
disadvantage (or advantage) the paper 
(van Eck et al, 2013). A recent study 
based on data from the Chinese 
Science Citation Database™ reports a 
roughly 50% accuracy rate in assigning 
papers to journal-defined categories 
(Shu et al, 2019). Finally, because 
journal-defined fields are typically,  
like the Web of Science categories, 
designed to aid information retrieval, 
the assignments may have 
consequences when deployed for  
a different purpose, a phenomenon 
called "indexer effects" (Rafols & 
Leydesdorff, 2009). In conclusion, 
journal-defined fields are robust but 
not refined representations of field and 

citation characteristics (Leydesdorff & 
Bornman, 2016; Milojevic, 2020; Wang 
& Waltman, 2016).

Supervised information retrieval, the 
second approach, requires expertise in 
subject matter, is tedious and little-
used (Haunschild et al., 2018; Lewison, 
1996). It increases the likelihood of 
finding highly similar content with the 
probability that a homogeneous set will 
provide a sound reference set for 
citation normalization. This comes at a 
cost: there are few people with search 
and subject expertise to create these 
custom collections; and the work is a 
one-off exercise with poor replicability.

Algorithmic classification uses 
relationships between papers, not 
groupings of journals, to define 
structure and fields, usually with 
hierarchical organization. Field 
delineation is most often based on 
analysis of a citation network, but 
lexical features and other attributes can 
be used and hybrid systems have been 
proposed (Boyack & Klavans, 2020; 
Janssens et al, 2009; Yu et al, 2017; Zitt 
& Bassecoulard, 2006). This bottom-up 
approach relies on the "association of 
ideas" concept described in proposing 
the first citation index (Garfield, 1955).

Henry Small, for many years ISI’s Chief 
Scientist, pioneered co-citation in the 
1970s as a method to define the 
specialty structure of science. Co-
citation links publications related by 
frequent pairwise citation (Small, 1973). 
In 1974, Small and Belver Griffith of 
Drexel University, Philadelphia, used 
co-citation clusters to create maps of 
research specialties and employed 
multidimensional scaling to ordinate 
clusters according to their calculated 
similarity. Clustering algorithms and 
software for visualization are now a 
significant research activity in what has 
been termed algorithmically 
constructed classification systems using 
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citation relationships among papers, 
including bibliographic coupling, 
co-citation and direct citation, and other 
techniques (Ahlgren & Colliander, 2009; 
Ahlgren et al 2020; Sjögårde & Ahlgren, 
2018, 2020; Traag et al 2019; Waltman et 
al 2020; Waltman & van Eck, 2012). 
Certain characteristics are deemed 
more desirable than others, such as the 
range of cluster numbers and sizes 
(Perianes-Rodriguez & Ruiz-Castillo, 
2017; Ruiz-Castillo & Waltman, 2015; 
Šubelj et al 2016). Nonetheless, it is 
difficult to assert that these methods are 
always advantageous or to be preferred 
since, at higher levels of aggregation, 
we can show that there is much 
agreement between article-level and 
journal-defined classification and 
performance measures. An evident 
disadvantage is the black-box nature of 
algorithms: different research groups 
are unable to recreate categorization 
schemes; and variation in the output of 
different algorithms using the same data 
and mappings raises a question as to 
whether the results are essentially 
algorithmic artefacts (Gläser et al, 2017).

The effect of  
category granularity 

Granularity in construction matters with 
any classification scheme and influences 
analysis. Zitt et al (2005) noted the 
possibility that Category Normalized 
Citation Impact (CNCI) would change 
according to the level (described as the 
‘zoom’) at which any normalization 
occurs. A similar issue had been noted 
by Hirst (1978) in relation to ‘Discipline 
Impact Factors’; comparison of 
bibliometric indicators across fields had 
been reviewed by Schubert & Braun 
(1993, 1996); and Glänzel & Moed (2002) 
also commented on the effect of 
different levels of aggregation.

Adams et al. (2008) tested the effect of 
the ‘Zitt zoom’ on research performance 
indicators by analyzing the relative 
impact of articles submitted for 
assessment in the U.K. RAE 2001 at 
different levels of normalization (Table 1). 
The data for university departments at 
the three highest grades (4, 5 and 5*) 

awarded in three Units of Assessment 
(UOA13 Psychology, UOA14 Biological 
Sciences and UOA19 Physics) showed a 
positive relationship between peer 
judgements and citation impact at some, 
but not all, levels of data aggregation. 
When citation counts were normalized at 
journal level there was little difference 
between impact metrics at any grade but 
normalization relative to Web of Science 
category or the entire UOA produced 
statistically significant higher relative 
impact for higher graded units, 
supporting Zitt et al.’s (2005) analysis.

The risk of fine-grained assessment in 
evaluation is that a category becomes 
self-referential. Material submitted by 
lower ranked units is implicitly sourced 
from journals of lower average impact 
than that submitted by leading units. 
Relative to the journal, the papers are 
of similar impact to the medium in 
which they are published. Only when 
we zoom out, to e.g. the Web of 
Science level, is the higher absolute 
citation count for papers from more 
highly graded units apparent.

Table 1: The average Category Normalized Citation Impact (CNCI) of articles and reviews published during  
1996 to 2000 by research staff at U.K. universities for units graded 4, 5 or 5* in the Research Assessment Exercise 
2001 (RAE 2001). Data are shown for three Units of Assessment (UOA) with the numbers of units at each grade 
and the CNCI for their publications with citation counts normalized at three levels of granularity: the journal of 
publication; the Web of Science journal category; and the data set for the entire UOA. (Adams et al., 2008)

UOA13 Psychology

Average CNCI

Number  
of units

Journal 
Web of 
Science 

UOA 

17 1.22 1.40 0.80

17 1.18 1.80 1.05

12 1.32 2.38 1.63

Grade at  
RAE 2001

Grade 4

Grade 5

Grade 5*

UOA14 Biological sciences

Average CNCI

Number  
of units

Journal 
Web of 
Science 

UOA

17 1.29 2.35 1.89

30 1.11 2.33 2.33

11 1.18 2.53 2.93

UOA19 Physics

Average CNCI

Number  
of units

Journal 
Web of 
Science 

UOA 

15 1.28 1.84 1.98

23 1.47 2.51 2.96

5 1.82 3.32 3.75
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A new approach:  
bottom-up classification

The citation-based classification 
of articles and reviews is a bottom-
up categorical system, in which 
individual elements are progressively 
linked into larger units with 
shared characteristics based on 
features in the underlying data. 

Clarivate has now introduced a 
citation-based classification into 
InCites, developed collaboratively with 
the leading academic scientometrics 
team at the Centre for Science and 
Technology Studies (CWTS), Leiden 
University (Netherlands). It is intended 
to exploit the advantages claimed for 
article-level algorithmic classification: 

• Greater accuracy in representing 
microclusters, or specialties; 

• Increased homogeneity 
of content; and 

• Improved citation normalization. 

This innovation contrasts with the 
historical journal classification 
approach.  A data-driven approach 
produces categorization informed by 
article metadata rather than human 
concepts. It can be tuned, for example 
to produce more or fewer clusters 
(fine-grained or coarse classifications). 
And the underlying mechanics of 
how the categories emerge are 
derived from the data model.

To evaluate the feasibility and potential 
use of this approach, Clarivate 
collaborated with CWTS to build an 
algorithm that creates a categorical 
structure based on the citation network 
in the Web of Science. The algorithm 
supports a hierarchical system with a 
series of discrete levels progressively 
aggregating the smallest clusters. 
Levels were defined as micro (the most 

granular clusters created), meso (the 
first level of aggregation that groups 
similar micro clusters together),  
and macro (the largest aggregations 
that group meso clusters).

Challenges were jointly explored to 
inform decisions on how final data 
should be produced and updated.

Timescale – the analysis was applied 
to content post-1980 to align with 
data contained in our analytics 
product InCites and to reflect 
the timeframe most often used in 
longitudinal bibliometric analysis.

Document types – although the 
majority of bibliometric analyses 
are performed using only articles 
and reviews, all document types 
were included in the analysis. Note 
that only documents that have a 
citation link to others (i.e. citing or 
cited) can be incorporated into the 
classification, so some ‘front matter’ 
from journals, book chapters and 
proceedings may not be included.

Cluster sizes – it is possible to tune 
an algorithm to produce any number 
of clusters, but it is important to 
consider the volume of each cluster 
and its effect on the normalization of 
citation counts. InCites makes possible 
Category Normalized Citation Impact 
(CNCI) indices and Percentile metrics. 
A suitable minimum volume must exist 
in each category/year combination 
or normalization baselines would 
become unstable. Analysis showed 
that ~2,000 micro clusters could be 
created under this constraint, but more 
would introduce undue sparsity.

Similarity measure – the measures 
that can be used to determine 
similarity via a citation network are: 

• bibliographic coupling (similarity 
based on shared cited references); 

• co-citation (similarity based on 
citation of documents pairwise); and 

• direct citation (any linkage). 

Co-citation excluded too many 
documents from classification.  
The trade-off between bibliographic 
coupling and direct citation relates to 
dynamism. If similarity is measured via 
bibliographic coupling, the position 
of a document is static (the list of cited 
references never changes). However, 
a direct citation solution includes 
citing documents, which increase 
over time as more documents and 
citations are added, leading to the 
possibility that a document’s cluster 
assignment could evolve. This is 
desirable, so existing documents may 
be reassigned as new topics emerge.

Updating – classification of static 
data is straightforward but a real-
world solution must cope with regular 
updates so we had to consider how 
a bottom-up system should evolve 
over time. For practical reasons, two 
forms of updating are implemented: 

1. Monthly – as new data are 
ingested, documents are assigned 
to an existing micro cluster based 
on their cited references. 

2. Yearly – the clustering algorithm 
is rerun annually. At this point new 
micro clusters may emerge, or 
some documents may drift between 
different clusters (drift will likely affect 
recent documents, cited most in the 
years soon after publication). The 
algorithm has been tuned to moderate 
creation of new meso or macro level 
clusters during the yearly update.
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Usability is the driving motivation for 
this solution. The resulting schema 
should be relatively static so users 
do not need to completely relearn 
the landscape with each annual 
update. At the same time, it should 
incorporate some agility to evolve so 
emerging topics can be established. 
To this end, CWTS incorporated a 
damping criterion that ensures no 
more than 5% of articles would change 
clusters during a yearly update. 

Labeling – the outcome of the 
algorithm is assignment of documents 
to micro clusters; a hierarchy to group 
micro into meso clusters; and then 
to group meso into macro clusters. 
Clusters are labeled for preliminary 
user identification of contents.  
Labels were created for macro and 
meso level clusters by expert curation 
informed by domain experts and by 
summary information for a cluster, 
such as frequent author keywords 

and Web of Science categories. 
Micro clusters are allocated a label 
automatically based on the most 
significant author keywords associated 
with documents in the cluster.

Citation Topics

The new categorization scheme 
‘Citation Topics’, based on the 
CWTS methodology, was added 
to InCites in December 2020. The 
name ‘Citation Topics’ is used 
because the classification system is 
built from the citation network and 
the resulting clusters vary in nature. 
Some align well with disciplinary 
labels (e.g. ophthalmology) while 
others are focused on specific 
diseases, materials or analytical 
techniques. The term ‘topic’ seemed 
more suitable than category or class, 
which imply a formal structure.

The current implementation 
(December 2020) is composed  
of 10 macro topics, 326 meso  
topics and 2,444 micro topics.  
More than 60 million documents  
were analyzed and more than 50 
million were assigned a Citation  
Topic. For the substantive research 
document types (articles and  
reviews), a high percentage of 
documents could be assigned to 
a topic for the full data from 1980 
onwards (92% of articles and 96% of 
reviews) and this improved further 
for the most recent five years (95% 
of articles and 99% of reviews). 

In Figure 1, we list the 10 broad  
macro topics and illustrate how  
‘Earth Sciences’, as an example,  
is aggregated from 12 meso topics,  
one of which (‘Sensors & Tomography’) 
is aggregated from five micro topics, 
of which one is highlighted for 
GPR (ground penetrating radar).

Figure 1: Three levels of the Citation Topics hierarchy described for Earth Sciences

Macro topics
1 Clinical & Life Sciences

2 Chemistry

3 Agriculture, Environment & Ecology

4 Electrical Engineering,  
Electronics & Computer Science

5 Physics

6 Social Sciences

7 Engineering & Materials Science

8 Earth Sciences

9 Mathematics

10 Arts & Humanities

Meso topics
8.8 Geochemistry,  
Geophysics & Geology

8.19 Oceanography, Meteorology  
& Atmospheric Sciences

8.93 Archaeology

8.124 Environmental Sciences

8.140 Water Resources

8.205 Ocean Dynamics

8.212 Sensors & Tomography

8.242 Nuclear Geology

8.283 Archaeometry

8.292 Mapping & Topography

8.305 Paleontology

8.312 Gas Hydrates

Micro topics
8.212.547 Seismic Data

8.212.652 GPR

8.212.1276 Microwave Imaging

8.212.1368 Underwater  
Acoustic Communication

8.212.1753 Electrical  
Impedance Tomography

8.312 Gas Hydrates
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Citation Topics 
compared to other 
classifications 

To compare the categorical structure 
in Citation Topics (article-level 
clustering) with established journal-
based schemes, we created a series 
of research maps to visualize the 
similarities and differences (Figure 
2. A-C). The maps focus on the ESI 
category "Geosciences" and include 
only the 48,000 articles and reviews 
published in 2015. In these diagrams, 
documents are located on a common 
mapping landscape, i.e. the same 
layout is used for each figure, with each 
document positioned according to its 

cited references and their similarity 
to all other documents (bibliographic 
coupling). We utilize Uniform Manifold 
Approximation (UMAP) (McInnes & 
Healy, 2018) to project the feature 
space onto two dimensions so the 
document space can be easily 
visualized. Then, in each plot, a different 
color scheme is applied to show how 
the same set of ‘ESI-Geosciences’ 
documents would be categorized 
in that classification system. The 
three exemplar systems are: Macro 
Citation Topics; Meso Citation Topics; 
and Web of Science categories.

The maps show that there are 
differences in how the same content 
is grouped or clustered by a particular 

classification scheme. Although the 
methodological differences between 
bottom-up (citation clustering) 
versus top-down (journal categories) 
are substantial, it is clear that these 
classification groups align across 
the landscape. This suggests that 
a ‘natural order’ is underpinning 
the guiding principles inherent in 
both expert judgment and citation 
linkage. Differences within this can be 
explained by interpretation of the way 
one discipline or field relates to other, 
cognate areas. An evident benefit of 
Citation Topics is that the more granular 
level of categorization (Micro Topics) 
gives opportunities for new groups 
to appear, which was not possible 
with older journal-based schemes.

Figure 2A. Citation Topics, Macro. The first picture shows how 2015 documents in the ESI field of Geosciences 
are arranged and colored according to Macro Topics. The majority of the ESI content has been clustered by 
citation links in the Macro Topic – Earth Sciences (green). On the right of the plot, a significant component has 
been allocated to Engineering (orange) and, on the left, another cluster is assigned to Physics (purple).

 1 Clinical & Life Sciences

 2 Chemistry

 3 Agriculture, Environment & Ecology

 4 Electrical Engineering,  
Electronics & Computer Science

 5 Physics

 6 Social Sciences

 7 Engineering & Materials Science

 8 Earth Science

 9 Mathematics

 10 Arts & Humanities
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 2.90 Water Treatment

 3.2 Marine Biology

 3.40 Forestry

 3.45 Soil Science

 3.64 Phylogenetics & Genomics

 3.91 Contamination & Phytoremediation

 4.169 Remote Sensing

 5.131 Meteorological  
& Atmospheric  Sciences

 5.191 Space Sciences

 6.153 Climate Change

 7.121 Concrete Science

 7.133 Geotechnical Engineering

 7.139 Energy & Fuels

 7.229 Mineral & Metal Processing

 8.124 Environmental Sciences

 8.140 Water Resources

 8.19 Oceanography, Meteorology  
& Atmospheric Sciences

 8.205 Ocean Dynamics

 8.212 Sensors & Tomography

 8.292 Mapping & Topography

 8.305 Palaeontology

 8.8 Geochemistry, Geophysics & Geology

 8.93 Archaeology

Figure 2B. Citation Topics, Meso. The second map shows Meso Topics so 
this follows the same citation-based article-level categorization but at a finer 
level of detail. Here it is apparent that the major groupings of ‘Geochemistry, 
Geophysics & Geology’ (8.8, top, green) and ‘Oceanography, Meteorology 
& Atmospheric Sciences’ (8.19, bottom, orange) segment the content.
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 [LE] Geosciences, Multidisciplinary

 [GC] Geochemistry & Geophysics

 [QQ] Meteorology & Atmospheric Sciences

 [KV, LE] Geography, Physical  
Geosciences, Multidisciplinary

 [SI] Oceanography

 [JA, QQ] Environmental Sciences,  
Meteorology & Atmospheric Sciences

 [KY] Geology

 [TE] Palaeontology

 [SR] Remote Sensing

 [LE, QQ, ZR] Geosciences,  
Multidisciplinary, Meteorology & 
Atmospheric Sciences, Water Resources

 [GC, IQ, SR, UE] Geochemistry  
& Geophysics

 [GC, RE] Geochemistry  
& Geophysics, Mineralogy

 [ID, IP] Energy & Fuels,  
Engineering, Petroleum

 [IX, LE] Engineering, Geological,  
Geosciences, Multidisciplinary

 [JA, SR, UE] Environmental Sciences, 
Remote Sensing, Imaging Science  
& Photographic Technology

 [IQ, KV, SR, UE] Engineering,  
Electrical & Electronic

 [KY, TE] Geology, Palaeontology

 [II, RE, ZQ] Engineering, Chemical,  
Mineralogy, Mining & Mineral Processing

 [SR, UE] Remote Sensing,  
Image Science & Photographic Technology

 [QQ, SI] Meteorology & Atmospheric 
Sciences, Oceanography

Figure 2C. Web of Science Categories. The final picture shows the Web of 
Science categories to which the set of papers have been assigned. These are 
mapped at the journal level and many journals are assigned to multiple categories. 
Hence, a color may correspond to a category-combination and similar colors make 
the map slightly harder to decipher, especially on the right side where a number of 
engineering categories are located. The main groupings at the top of the map are 
Geosciences, multidisciplinary (green, LE), Geochemistry & Geophysics (orange, 
GC), and Geology (yellow, KY) which overlaps broadly with the Meso Topic 8.8 
Geochemistry, Geophysics & Geology. Similarly, the major group at the bottom 
is composed of Meteorology & Atmospheric Sciences (purple, QQ) and QQ with 
Environmental Sciences (pink, QQ+JA). Astute readers will notice a portion of 
the map (circled) in the lower group that is not included with the Meteorological 
content (purple and pink) but is grouped together in the corresponding Meso 
cluster 8.19 Oceanography, Meteorology & Atmospheric Sciences. This 
content is specifically related to Oceanography (SI) and highlights the slight 
but real differences in granularity that are reflected in the assigned labels.
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The impact of classification

InCites, Clarivate’s analytical 
bibliometric package, provides the user 
with multiple choices of top-down data 
classifications that now includes the 
bottom-up Citation Topic classification 
based on our work with CWTS.  
How much does the choice of data 
classification affect the range of data 
used, the way it is grouped, the degree 
of granularity, and how does it change 
baselines as well as sample content?

To explore these questions, we 
compared the outcome of analyses 
based on the 254 journal-based 
categories of the Web of Science 
(covering all subject domains) with those 
based on alternative classifications.  
Our summary metrics (Table 2) describe 
the publication volume (count of articles 
and reviews) and citation impact (CNCI) 
of ten countries. Five of these have both 
large and well-funded research 
economies (U.S., China, U.K., Germany 
and Australia) and the other five, while 
improving, presently have both 
relatively weaker funding and smaller 
research output.

Does Sri Lanka really have an average 
CNCI equal to the U.S. when the latter 
produces more than 500 times as many 
publications? What does it mean if Iran 
has the highest rate of cited papers 
when it is the second lowest in average 
CNCI? How, in other words, are these 
point metrics compiled and calculated? 
The data on CNCI trends (Figure 3) 
suggest that average index for at least 2 
of the 10 nations may be unreliable: the 
average for Sri Lanka is not only high but 
volatile. Does that introduce doubt 
about the more stable values? It 
certainly suggests a need to know more 
about the mass of publications that feed 
the indicators for each economy.  
Can a single indicator stand for millions 
of publications and tens of millions of 
citations? More information is evidently 
required to properly interpret Table 2 
and Figure 3, and to explore how such 
results might be influenced by choosing 
a particular classification system.

Table 2. Summary metrics for the research output (numbers of articles and 
reviews indexed in the Web of Science) and performance (average category 
normalized citation impact, CNCI world average = 1.0) of 10 regions during 
a recent 10-year period (2010 to 2019). Regions are ranked on CNCI.

Figure 3. Annual trends in Category Normalized Citation Impact 
(CNCI) for 10 regions (five established and five growing research 
economies) during a recent 10-year period (2010 to 2019).
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Australia U.K. Germany U.S.

Bulgaria IndonesiaSri Lanka

China

Iran Argentina

Papers CNCI Citations % cited

U.K. 1,981,903 1.41 26,932,154 65.6

Australia 888,127 1.41 12,626,406 72.4

U.S. 6,838,175 1.31 90,031,964 63.9

Sri Lanka 13,068 1.31 170,284 63.6

Germany 1,615,968 1.30 23,029,125 71.1

Bulgaria 38,366 1.01 360,385 60.2

China 3,743,888 0.99 39,306,476 71.5

Argentina 121,077 0.96 1,321,844 71.4

Iran 362,748 0.91 3,428,680 77.9

Indonesia 85,885 0.81 342,576 39.1
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Classification  
and volume 

The total available Web of Science 
publication dataset is often greater 
than the number of papers actually 

assigned to each country if any of 
six other classifications available in 
InCites are chosen (Table 3). Some, 
especially the journal lists for the 
ANZSRC FORs, reduce the available 
data for countries such as Indonesia by 
as much as half. Even for the U.S. and 

the U.K. the publication set is down 
by 20% (the L1 Divisional categories) 
or 35% (the more specific L2 Group 
categories). By contrast, the schema for 
the U.K. REF and those used in Brazil 
by CAPES and FAPESP essentially 
draw on the full source material.

ESI FOR L1 FOR L2 REF2014 CAPES49 FAPESP

U.S. 0.85 0.80 0.64 1.00 1.00 1.00

China 0.78 0.71 0.54 1.00 1.00 1.00

U.K. 0.81 0.80 0.65 1.00 1.00 1.00

Germany 0.84 0.77 0.61 1.00 1.00 1.00

Australia 0.86 0.84 0.67 1.00 1.00 1.00

Iran 0.90 0.80 0.64 1.00 1.00 1.00

Argentina 0.90 0.82 0.66 1.00 1.00 1.00

Indonesia 0.34 0.35 0.26 0.98 1.00 1.00

Bulgaria 0.75 0.60 0.48 0.98 1.00 1.00

Sri Lanka 0.76 0.72 0.59 0.99 1.00 1.00

Table 3. The ratio between numbers of papers assigned to the 10 regions listed in Table 3 via the 
Web of Science journal-based disciplinary category scheme and six other classifications used in 
InCites. Variation in the scope of the literature that is covered will affect both the numerator and 
denominator citation counts in any subsequent normalization calculation of citation impact.

Classification  
and impact

The schema also affect CNCI. 
Reassuringly, there is a high degree 
of correlation between CNCI values 
obtained from citation counts 
normalized under different categorical 
systems but the correlation is not perfect. 
There can be differences both in the 
y-intercept, which would move all values 
up or down, and in the slope, which 
would differentially affect organizations 
with lower and higher average impact.

Matching data categorization to the 
objectives of the assessment is essential 
if equity is to be maintained across all 
parties under assessment. The average 
CNCI for 86 U.K. universities (2015 
to 2019), taken across all discipline 
categories in each of several different 
categorical systems, is shown in Figure 
4. The effect of moving from the Web 
of Science journal categories to the 
FOR 2-digit Level 1 is to depress most 
institutional CNCIs but this is most 
marked below world average CNCI 
and almost negligible at the upper end 
of the distribution. There are some 

evident outliers, so the effect is far 
from uniform. There is a much closer 
correlation between the CNCI values 
for the Web of Science categories and 
the categories created by the CWTS 
Citation Topic clustering. Comparison 
of CNCI using CWTS meso categories 
and the FOR1 categories shows again 
that the FOR system depresses the 
CNCI values. A shift to a finer-grained 
level, using the CWTS micro and the 
ANZ FOR Level 2 categories, produces 
a similar effect and depression in the 
low CNCI part of the distribution 
is relatively greater. (Figure 4)
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Figure 4.A-D. Correlations between the average Category Normalized Citation Impact (CNCI) of Web of Science 
indexed publications for 86 U.K. universities (2015 to 2019) when different schema are used to categorize the 
institutional data and create global benchmarks. All the correlations are highly significant but the variance about the 
regression differs for specific institutions. To track this, four universities with distinct research histories and portfolios 
are highlighted with a constant color point. (Web of Science categories map journals to 254 fields; ANZSRC Fields 
of Research (FOR) L1 = journals mapped to 24 broad Divisions and L2 = 212 specific Groups nested within L1; CWTS 
MESO and MICRO refer to coarse and fine Citation Topic categories developed by CWTS, University of Leiden).

Figure 4A. FOR1 vs Web of Science, correlation = 0.97
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Figure 4B. CWTS Meso vs FOR1, corr = 0.95
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Figure 4C. CWTS Meso vs Web of Science, corr = 0.99
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Figure 4D. CWTS Micro vs FOR2, corr = 0.93
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The changes in relative positions for 
the four tracked universities illustrates 
the considerable residual variance 
because the shift from one system to 
another is never uniform across all four. 
There are six universities which have an 
average CNCI of 1.7 when Web of 
Science journal categories were used 
for normalization whereas they would 
display CNCI values ranging between 
1.45 and 1.85 if FOR L1 Divisional 
categories were used (Figure 4.A). 
Among the four tracked universities, 
the highest performer gains in the shift 
from CWTS-MESO to FOR1 (Figure 
4.B) and to FOR2 (Figure 4.D), but the 
other three all suffer a detriment. 

Whether these shifts are due to subject 
mix, because each system assigns 
journals differently across categories so 
global baselines change, or another 
factor, it materially affects the relative 
institutional outcomes.

We can now compare the outcomes 
of different classification schemes on 
national performance indicators. 
Table 2 (based on Web of Science 
journal categories) suggested that 
CNCI for Sri Lanka was similar to that 
of the U.S. and Germany. Figure 5 
shows that the use of either the ESI or 
the two ANZ FOR schema would have 
produced outcomes in which  

Sri Lanka is world-beating. Indonesia’s 
CNCI would also be elevated if these 
schema are used, but most countries’ 
CNCI is affected much less – although 
that of the U.S., U.K., Australia and 
Germany are all slightly depressed 
under FOR Level 2.

None of these are wrong answers.  
The lesson here is that choosing a 
scheme for data selection and 
aggregation will influence analysis and 
interpretation, yet none of the alternative 
schema have been implemented 
casually or without planning, analysis 
and prior development and all present 
reasonable, fact-based outcomes.

Figure 5. The average Category Normalized Citation Impact (CNCI) for 10 regions calculated 
with data normalized under seven different classification schemes. The numbers of publications 
used to calculate CNCI vary between schema are indicated in Table 3. The graph lines do 
not imply any connection between distinct schema but are inserted as a visual aid.
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Implications for responsible metrics

The responsible user of bibliometric 
data needs to be clear whether the 
data they have are relevant to the 
evaluation questions they pose; they 
need to establish an a priori 
understanding of how they will use the 
data and of the choices of methods to 
apply; and that choice of methods must 
include careful understanding of the 
classification scheme they will use to 
group and benchmark the data.

It should be clear that evaluators would 
be incautious if they were to rely solely 
on the summary information in Table 2 
to make judgments about the relative 
or absolute research strengths, even of 
whole countries. This should be even 
more important if they were reviewing 
a table of institutions from the same 
countries or a set of their research 
groups seeking funding, and yet this 
happens frequently.

Highly granular categorical systems 
group research papers into small, 
self-referential pockets that boost the 
apparent relative citation 
performance of work that appears 
poorly cited in familiar topical 
aggregations. More generally, the 
effect of a choice of discipline/topic 
categories for aggregating 
publications and normalizing citations 
is two-fold. First, countries with a less 
developed domestic research base, 
and less well cited domestic research 
output, will tend to have smaller 
publication tallies when more 
exclusive categorical systems (such as 
ESI and the ANZSRC FORs) are used. 
Second, because such categories 
focus on journals selectively, it is the 
least well cited part of a country’s 
activity that is omitted, so their 
average CNCI is raised. So, although 
publication counts for Sri Lanka, 
Bulgaria and Indonesia are 

significantly reduced in an ESI analysis 
compared with a Web of Science 
analysis, they nonetheless then have 
higher average CNCI.

We wholly endorse the views of 
Professor Henk Moed (Moed, 2020a, 
2020b) regarding the need for an 
evaluation framework in which the 
context and the purpose of the 
exercise are overriding considerations. 
Citations are themselves value-laden 
constructs with social as well as 
research weight. Any aggregation  
of citation counts, subsequent 
management of the data through 
normalization and fractionation, and 
choice of analytical methodology then 
applied, must introduce further 
subjective modification that moves 
from original information towards a 
stylized indicator. 

Users planning a research  
evaluation should be aware  
of these summary points:

• Purpose: data classification 
meets user need: some users 
focus on academic performance 
while others focus on economic 
or social benefit; and some align 
with research fields while others 
align with a standard curriculum.

 USERS need to consider whether 
their objectives align with the 
designer of the classification.

• Categories: there are many 
systems for assigning journals 
and/or individual publications 
to discipline categories and 
none is uniquely correct.

 USERS should take a researcher’s 
output portfolio into account 
in choosing a data source.

• Granularity: a choice of broad or 
narrow focus is made when citation 
counts are normalized against a 
global benchmark, for comparative 
purposes or to aggregate data 
across years and disciplines.

 USERS need to be aware of 
granularity and choose an 
appropriate level of aggregation.

• Coverage: not all topics within 
an evaluated unit’s research 
are covered equitably by all 
classification schemes, and the 
need for equity applies equally 
to discipline and region.

 USERS should determine whether 
the classification captures data 
equitably for all stakeholders.

Data categorization is not a trivial 
consideration in research policy, 
management and evaluation, as this 
report has demonstrated. When 
evaluators are clear about objectives, 
the questions to be addressed, the 
relevance of bibliometrics to those 
questions, the nature of the available 
data, and the place of the bibliometric 
analysis within an overall evaluative 
framework, then they should proceed 
to work through the issues and 
determine whether they have fully 
understood the implications of these 
and the outcome in the context of their 
purpose and materials.
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